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ABSTRACT 

 

 

This research involved an important extension of existing field-implemented and tested PATH research by 

the authors on individual vehicle reidentification, to develop methods for assessing freeway and arterial 

(and transit) system performance for the Caltrans PeMS (Performance Measurement System).  PeMS has 

been adopted by Caltrans as the standard tool for assessing freeway system performance, but lacks 

capabilities for assessing arterial and transit system performance, and strategies that combine freeways, 

arterials and/or transit and commercial vehicle fleets.  It was shown that the research methodology of this 

project could directly address these limitations in PeMS.  A systematic investigation was conducted of 

anonymous vehicle tracking using existing inductive loop detectors on both freeway and arterial street 

facilities combined with new, low-cost high-speed scanning detector cards (that were utilized by the 

authors in PATH TO 4122) to meet the needs of PeMS.  Both field data and microscopic simulation were 

utilized in a major travel corridor setting, using the Paramics simulation model and field sites that were part 

of the California ATMS (Advanced Transportation Management Systems) testbed network in Irvine, 

California. The experience and insights of the research team obtained from extensive previous and current 

PATH research on vehicle reidentification techniques for single roadway segments and signalized 

intersections was used to investigate and develop methods for tracking individual vehicles (including 

specified classes of vehicle such as buses and trucks) across multiple detector stations on a freeway and an 

arterial street network to obtain real-time performance measurements (including dynamic or time-varying 

origin-destination (OD) path flow information such as path travel time and volume).  This study presented a 

framework for studying the feasibility of an anonymous vehicle tracking system for real-time freeway and 

arterial traffic surveillance and performance measurement.  The potential feasibility of such an approach 

was demonstrated by simulation experiments for both a freeway and a signalized arterial operated by 

actuated traffic signal controls.  Synthetic vehicle signatures were generated to evaluate the proposed 

tracking algorithm under the simulation environment.  The PARAMICS microscopic simulation model was 

used to investigate the proposed vehicle tracking algorithm.  The findings of this study can serve as a 

logical and necessary precursor to possible field implementation of the proposed system in freeway and 

arterial network.  It is also believed that the proposed method for evaluating a traffic surveillance system 

using microscopic simulation in this study can offer a valuable tool to operating agencies interested in real-

time congestion monitoring, traveler information, control, and system evaluation.  Furthermore, the 

automatic vehicle classification system developed in this study showed very encouraging results.   

 

 

Keywords: vehicle signature, detector, sensor, inductive loop, vehicle classification, vehicle 

reidentification, testbed, freeway, signalized intersection, level of service, detector card, search space 

reduction, microscopic simulation 
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EXECUTIVE SUMMARY 

 

 

A new generation of Advanced Transportation Management and Information Systems (ATMIS) is now 

widely under development, for applications in traveler information, route guidance, traffic control, 

congestion monitoring, incident detection, and system evaluation, across extremely complex transportation 

networks.  However, the limitations, and often large errors, inherent in present point-based vehicle 

surveillance systems greatly diminishes the ability of public agencies to effectively control, manage and 

evaluate the performance of highway and transit systems, and to provide useful, timely and accurate travel 

information to users.  New types of travel data, in real-time, are essential for effective implementation and 

performance assessment of ATMIS.  In the past, such data were extremely difficult to obtain.  To address 

this need, there has recently been substantial interest in Europe and the United States, and particularly in 

California, in implementing vehicle reidentification systems.  Interest has initially focused on using the 

extensive existing inductive loop infrastructure in California, while recognizing that some emerging 

technologies such as video and laser detectors, the Global Positioning System (GPS) of satellites, and 

automatic vehicle identification (AVI) systems involving on-board vehicle sensors/tags/transponders and 

wireless vehicle-to vehicle and vehicle to roadside communications, may transition into practice in the 

future.   

 

Regardless of the traffic sensor technologies used, the California Department of Transportation (Caltrans) 

has identified real-time travel time and origin-destination (OD) information as particularly important 

outputs of such systems.  Relatively inexpensive, anonymous individual vehicle tracking systems based on 

the existing infrastructure of inductive loop detectors on freeway and arterial streets could be a particularly 

cost-effective, immediately implementable solution, for the medium term and beyond.  The vehicle 

reidentification system developed by the authors in recent and current PATH research provides real-time 

freeway and signalized intersection and arterial section or link traffic performance data, and potentially 

network OD information such as vehicle paths and OD path travel times and volumes.  Data such as these, 

derived from individual vehicle tracking, form the basis for numerous real-time traffic performance 

measures that can meet and exceed the needs of PeMS for assessment of freeway and arterial and transit 

system performance.   

 

However, all applications to date by the authors of the vehicle reidentification approach have been to 

individual freeway, arterial or signalized intersection sites with only one upstream and downstream station 

(and in the intersection case with three downstream stations for left, through and right vehicles).  No 

substantive studies have been undertaken of the ability of the system to operate effectively in a freeway or 

arterial network, nor of the accuracy of OD information it would generate (except for the three destinations 

represented by the left, through and right turn movements at an individual intersection).  Although the 
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potential for extension of this approach to network applications is very high, further feasibility study is 

necessary before investing in actual network-wide implementation.  This research conducted such a study, 

using both field data and microscopic simulation of sites in the California ATMS Testbed in Irvine, 

California. 

 

A systematic investigation was conducted of anonymous vehicle tracking using existing inductive loop 

detectors on both freeway and arterial street facilities combined with new, low-cost high-speed scanning 

detector cards (that were utilized by the authors in PATH TO 4122) to meet the needs of PeMS.  Both field 

data and microscopic simulation were utilized in a major travel corridor setting, using the Paramics 

simulation model and field sites that were part of the California ATMS (Advanced Transportation 

Management Systems) testbed network in Irvine, California. The experience and insights of the research 

team obtained from extensive previous and current PATH research on vehicle reidentification techniques 

for single roadway segments and signalized intersections was used to investigate and develop methods for 

tracking individual vehicles (including specified classes of vehicle such as buses and trucks) across 

multiple detector stations on a freeway and an arterial street network to obtain real-time performance 

measurements (including dynamic or time-varying origin-destination (OD) path flow information such as 

path travel time and volume).   

 

This study presented a framework for studying the feasibility of an anonymous vehicle tracking system for 

real-time freeway and arterial traffic surveillance and performance measurement.  The potential feasibility 

of such an approach was demonstrated by simulation experiments for both a freeway and a signalized 

arterial operated by actuated traffic signal controls.  Synthetic vehicle signatures were generated to evaluate 

the proposed tracking algorithm under the simulation environment.  The PARAMICS microscopic 

simulation model was used to investigate the proposed vehicle tracking algorithm.  The findings of this 

study can serve as a logical and necessary precursor to possible field implementation of the proposed 

system in freeway and arterial network.  It is also believed that the proposed method for evaluating a traffic 

surveillance system using microscopic simulation in this study can offer a valuable tool to operating 

agencies interested in real-time congestion monitoring, traveler information, control, and system 

evaluation.  Furthermore, the automatic vehicle classification system developed in this study showed very 

encouraging results.   

 

The findings of this study could be invaluable to Caltrans and other operating agencies interested in real-

time performance assessment of freeway and arterial street systems, and the implementation of such 

capabilities in PeMS.   
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Task Order 4122 - Anonymous Vehicle Tracking for Real-Time Freeway and 
Arterial Street Performance Measurement 

 
 

CHAPTER 1   INTRODUCTION 

 

 

1.  Introduction 

 

1.1 Background 

 

One of the fundamental requirements to facilitate implementation of any Advanced Transportation 

Management and Information System (ATMIS) is the development of a real-time traffic surveillance 

system to produce reliable and accurate traffic performance measures.  This report presents a new 

framework for anonymous vehicle tracking that is capable of tracking individual vehicles by utilizing the 

state – of – the art in detector technology.  A systematic simulation investigation of the performance and 

feasibility of anonymous vehicle tracking on freeways and signalized arterials using the PARAMICS 

(PARAllel MICroscopic Simulation) simulation model is performed.  Extensive study experience with 

vehicle reidentification techniques on single roadway segments is used to investigate the performance 

obtainable from tracking individual vehicles across multiple detector stations.  The findings of this study 

will serve as a logical and necessary precursor to possible field implementation of vehicle reidentification 

techniques 

 

1.2 Report Outline 

 

In chapter 2, the analysis of real world vehicle signature data is discussed.  This section will serve as basis 

for the vehicle feature generation module in the microscopic simulation model.  Chapter 3 presents 

enhanced vehicle tracking algorithms for freeway and arterial sections.  A multi-section vehicle tracking 

scheme and possible elements for performance measurements are also discussed in this section.  Simulation 

settings, as well as each individual module inside the simulation, are presented in Chapter 4.  Experimental 

simulation design and results are described in chapter 5.  An enhanced approach to  vehicle classification is 

presented in Chapter 6 .  Finally, Chapter 7summarizes the conclusions of this research and directions for 

future research. 
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CHAPTER 2   SIGNATURE DATA ANALYSIS 

 

2.1 Introduction 

 

Prior to using the simulation models for vehicle tracking, analysis of vehicle signature data should be 

performed.  This procedure is essential to obtain the input data for the simulated vehicle reidentification 

system.  Therefore, in this section, detailed analysis of vehicle signature data using a real world dataset 

collected from Detector Testbed site was conducted for synthetic vehicle signature feature data generation.  

Such analysis includes spatial repeatability and the error distribution of vehicle signature feature vectors.  

This section will help to generate the input data for the vehicle reidentification algorithm that will be 

implemented in the simulation model.  The vehicle reidentification system and simulation model settings 

will be discussed further in the following chapters.   

 

2.2  Data Collection / Ground Truthing 

 

The California ATMS Testbed has been an ongoing testing ground for ITS strategies since 1991.  The 

Testbed uses an integrated approach to the development and deployment of advanced technologies in the 

operation and management of transportation systems.   

 

The Testbed has the capability to perform real-time, computer-assisted traffic management and 

communication.  The real-time information system collects both arterial and freeway data from the Testbed 

area of Orange County, California.  The Testbed communications network links the Transportation 

Management Centers (TMC’s) of the City of Irivine, City of Anaheim, Caltrans District 12, and University 

of California at Irvine (UCI) Institute of Transportation Studies.  Figure 2.1 summarizes the major 

functions and current communication system of the Testbed with the real world TMC and the field.   
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Figure 2.1.  Testbed Communication 

 

In addition to the existing multi-jurisdictional and multi-agency operated surveillance and communications 

infrastructure, the Testbed features an 0.7 mile freeway section on northbound I-405 and a major signalized 

intersection in Irvine that are both fully instrumented with the latest detector technologies for advanced 

traffic control and surveillance.  The Traffic Detector and Surveillance Sub-Testbed (TDS2), one of the 

study sections in this research, consists of two contiguous sites on the seven-lane I-405 freeway, south of 

Irvine, between Laguna Canyon and Sand Canyon.  The section is about 0.7 mile long and is equipped with 

different traffic sensors in both upstream and downstream.  The overall purpose of the TDS2 is to provide a 

real-world laboratory for the development and evaluation of emerging traffic detection and surveillance 

technologies.  As illustrated in Figure 2.2, double inductive loops are implemented for all lanes, and special 

cameras, that capture the horizontal images of each single vehicle passing over the detection zone, are 

installed on top of each lane.  Other detectors such as radar detector and acoustic detectors are installed on 

the adjacent wireless antenna pole.  There are seven lanes upstream, at Laguna Canyon, and one that 

merges with the adjacent lane within the section.  The left most lane is an HOV lane.  At the downstream, 

Sand Canyon, there are two HOV lanes, four mainstream lanes and one off-ramp lane.  Poles adjacent to 

the mainline also permit side mounting of detectors.  A number of traffic cabinets to house computers, 

communications, and video image processing equipment were also installed for the research purposes. 
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Figure 2.2.  Detector Testbed 

 

The signature dataset used in this study was obtained from 15:00 to 15:20 PM on July 23rd, 2002.  Detailed 

description of the vehicle signatures can be found in many research studies by the authors (MOU 3008, TO 

4122, Park et al 2004, Oh, S. et al 2002).  Each upstream vehicle was manually matched to the 

corresponding vehicle at downstream along with the corresponding vehicle class information.  The dataset 

contains about 2500 vehicles at each detection station.  This data reduction result will serve as initial step 

toward further analysis, such as feature repeatability test as well as feature difference distribution analysis 

that are key issues for the error generator in simulation.   

 

2.3 Signature Data Analysis 

 

2.3.1 Feature Repeatability Analysis 

 

Vehicle reidentification is a pattern recognition process based on the vehicle feature vectors from different 

sites.  Therefore, if signature variations that result in significant discrepancies between up and downstream 

vehicle feature vectors do not exist, the algorithm would be capable of producing perfect vehicle signature 

matching.  However, in practice, because of the exogenous effects of environmental elements such as 

physical loop installation, and entrance angle of a vehicle into the inductive field, vehicle signatures vary 
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from different detection stations.  Therefore, investigation of such variations should be conducted to build 

the basis for the synthetic vehicle signature generator in the simulation model.  Detailed description on 

vehicle feature vectors, vehicle specific feature vectors and traffic specific feature vectors, can be found 

from previous PATH project report by same authors (MOU 3008, TO 4122).  In this study, degree of 

symmetry (DOS) was added as one of the vehicle feature vectors.  DOS captures the upper part signature 

symmetry whereas shape parameter is more dedicated to represent the overall signature symmetry.  Table 

2.1 and Figure 2.3 summarize the signature feature vectors. 

 

 

Table 2.1.  Signature Feature Vectors 

Feature Vector Feature Description 

Maximum Magnitude Maximum absolute magnitude value (a) 

Shape Parameter (SP) Degree of Symmetry ((b)/(b+c)) 

Electronic Vehicle Length (d) 

Degree of Symmetry (DOS) Degree of Symmetry  

e : median 

Sum of the distance from median g, to each point that is 

above “0.5” y value 

Number of High Magnitude (NHM) Sample number above “0.5” y value after x,y normalization 
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Figure 2.3.  Signature Feature Vector Extraction 
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For the vehicle signature repeatability analysis, the average percentage error (APE) of each feature vector 

was chosen as the criterion.  Derivation of such index is as following: 
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Analysis results are presented in Table 2.2, and among all the feature vectors analyzed, it is clear that the 

vehicle length is the most reliable and repeatable one with the lowest average percentage error.  This also 

implies that the length feature will be the critical element to determine the system performance in the 

reidentification model.   

 

Table 2.2. Average Percentage Error 

Feature Percentage Error in Feature Difference 

Maximum Magnitude 22.97 

Electronic Length 1.34 

Shape Parameter (SP) 4.02 

Number of High Magnitude (NHM) 2.09 

Degree of Symmetry (DOS) 23.08 

 

 

Scatter plots of each feature are described in Figure 2.4 – 2.8 .  Vehicle length and NHM are the feature 

vectors that follow close to the 45-degree line.  This again explains the low average percentage error for 

both feature vectors.  SP also shows promising vehicle specific feature characteristics, invariability over 

space.  Maximum magnitude and DOS are the ones that show wide range of variation.  From the above 

analysis, we can conclude that vehicle length is the most prominent feature vector that show reliable 

repeatability and therefore should be the most important parameter for vehicle reidentification algorithm. 
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Figure 2.4.  Maximum Magnitude Scatter Plot 

 
Figure 2.5.  Electronic Length Scatter Plot 
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Figure 2.6.  SP Scatter Plot 

 
Figure 2.7.  DOS Scatter Plot 
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Figure 2.8.  NHM Scatter Plot 

 

2.3.2 Statistical Analysis on Feature Difference Distribution (K-S, chi-Square Testing) 

 

The core part of the simulation logic is to generate the inputs for the vehicle reidentification module, based 

on the vehicle signature feature difference from upstream and downstream.  Therefore, the distribution of 

each vehicle feature should be tested before the feature vector difference generation.   

 

One procedure for testing the hypothesis that a random sample size n of the random variable X follows a 

specific distributional form is the chi-square goodness-of-fit test.  Goodness of fit tests provide helpful 

guidance for evaluating the suitability of a potential input model.  This test formalizes the intuitive idea of 

comparing the histogram of the data to the shape of the candidate density or mass function.  The test is 

valid for the large sample sizes, for both discrete and continuous distributional assumptions, when 

parameters are estimated by maximum likelihood.  The test statistic is given by the following formula. 
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It can be shown that  approximately follows the chi-square distribution with k-s-1 degree of freedom, 

where s represents the number of parameters of the hypothesized distribution estimated by the sample 

statistics.  The hypotheses are :  

χ 2

0

H0 : the random variable, X, conforms to the distributional assumption 

H1 : the random variable, X, does not conform 

The null hypothesis, H0, is rejected if  >  χ 2

0 χα

2

1, −−sk

 

In this study, in order to test the normal distribution, two parameters, mean and variance, should be 

investigated with a degree of freedom of k-2-1, where k represents the analysis interval.  Table 2.3 shows 

the chi-square statistics and the results for five feature vectors.  As presented in the Table, each feature 

vector difference distribution cannot reject the null hypothesis at the five percent at level of significance, 

and therefore, can be regarded as a normal distribution. 

 

Table 2.3.  Chi-Square Test (* ) 1.11
2

5,05.0
=χ

Feature Vector Chi-Square Statistics (Hypothesis Testing) 

Maximum Magnitude 9.33 (Cannot reject the H0) 

Length 9.91 (Cannot reject the H0) 

Shape Parameter (SP) 10.98 (Cannot reject the H0) 

Number of High Magnitude (NHM) 8.45 (Cannot reject the H0) 

Degree of Symmetry (DOS) 3.62 (Cannot reject the H0) 

 

 

 11



2.3.3 Vehicle Clustering 

 

Efforts to find out the error distribution discussed above were performed with actual vehicle signatures.  

Basically, a unique vehicle signature is observed from each individual vehicle. However, it is impractical to 

estimate each single error distribution for each individual vehicle.  A clustering technique was employed to 

overcome this limitation based on the assumption that vehicles in the same cluster would generate similar 

vehicle signatures and the generated signatures would be distinct from those of other vehicles in different 

clusters. 

 

The vehicle signatures in the dataset were clustered based on their similarities.  This clustering should meet 

two requirements: homogeneity of vehicle signatures within the same categories, i.e. data that belong to the 

same category should be as similar as possible, and heterogeneity of vehicle signatures between categories, 

i.e. data belonging to different categories should be as different as possible.  For clustering analysis, the 

feature differences extracted from individual vehicles passing between upstream and downstream detectors 

were used. The number of clusters corresponds to the number of vehicle types specified in PARAMICS.  

However, the number of clusters to use is an issue because it can affect the performance of the vehicle 

reidentification algorithm.  To determine a reasonable number of vehicle clusters, we selected a number of 

clusters that was able to reproduce the actual performance of vehicle reidentification, which we have 

obtained from the field.  So far, the vehicle reidentification performance in the freeway has attained about 

70 ~ 80% of correct matching rate based on the previous studies (Sun et al, 1999; TO 4122). 
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CHAPTER 3   REIDENTIFICATION SYSTEM DEVELOPMENT 

 

 

3.1 Introduction 

 

The fundamental idea of vehicle reidentification based on inductive signatures is to match a given 

downstream vehicle signature with an upstream vehicle signature from amongst a set of candidate upstream 

vehicle signatures.  Applying the concept of the lexicographic method developed by Sun et al. (1999) for 

freeway applications, vehicle reidentification was formulated as a five-level optimization problem.  

Minimizing mismatches between feature vector pairs denotes the “optimization” on any given objective.  

 

Vehicle reidentification is the pattern recognition procedure based on a set of vehicles.  For each detected 

vehicle at downstream, the system tries to capture possible matching vehicles from the corresponding 

upstream station.  To reach higher performance rate in vehicle matching, the search for optimal upstream 

candidate set for each downstream vehicle is critical.  This selecting procedure is called optimal candidate 

searching and several levels of restriction are applied to obtain the final optimal candidate set.  Figure 3.1 

shows multi - level restriction for the vehicle reidentification system.  The restriction can be divided into 

two categories.  Vehicle specific feature restriction and traffic specific restriction.  In vehicle specific 

feature restriction, the elimination of most unlikely identical upstream vehicles is processed based on the 

vehicle’s physical attributes.  Traffic specific feature restriction includes the possible upstream set 

searching as well as time window setting.  The first step of this restriction is to reduce the spatial search 

space, which identifies the upstream origin of each vehicle.  The next step of the search space restriction is 

temporal search space reduction, which establishes a lower and upper bound for feasible travel time, called 

a ‘time window’.  For both freeways and arterials, this procedure is more complicated than vehicle specific 

feature restriction because it involves time/flow variant traffic dynamics.  In arterial case, because of the 

signal interruption, this step is more challenging part.  The following sections will discuss the 

complications and resolution points.   
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Figure 3.1.  Multi Level Restriction 

 

 

3.2  Freeway Search Space Restriction 

 

For accurate vehicle tracking, accurate upstream and time window settings need to integrate traffic changes.  

Efforts to achieve this concept are carried in the following steps.  The future task includes finding the 

dynamic optimal time window with the prediction model involved. 

 

3.2.1 Spatial Search Space Restriction 

 

In freeway cases, the upstream corresponds to the immediate adjacent section or the on-ramp, if there is any.  

Therefore, identification of appropriate upstream is an issue when the on-ramp is present.  Depending on 

the on-ramp distance from the downstream, lane information is used to restrict the spatial space searching 

procedure.  Further investigation on driver’s lane changing behavior will contribute to the effective 

searching space reduction.  This investigation will also help to build accurate microscopic simulation model 

by integrating improved driver’s behavior, and to provide safety guideline as lane changing, speed variance 

and traffic safety are all connected.   
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3.2.2 Temporal Search Space Restriction 

 

Based on each vehicle’s detection time at downstream, downstream point speed data, and the estimated 

upstream detection time, appropriate time window for each vehicle is derived.  Followings show the 

detailed steps for time window setting and flow chart is summarized in Figure 3.2. 

 

Step I : Downstream Vehicle Detection 
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Step III : Upstream Detection Time Estimation 
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Step IV : Lower and Upper Bound Setting 

1. From the estimated upstream detection time, get the previous t seconds vehicle speed 

2. Find the minimum and maximum speed within the analysis interval, t 

3. Maximum Speed : gives minimum travel time, TTmin 

4. Minimum Speed : gives maximum travel time, TTmax 

 

Step V : Time Window Setting 

vVehicleforWindowTimeTW

TTDTTWTTDT

v

vvv

:

minmax −≤≤−
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Figure 3.2.  Freeway Time Window Setting Flow Chart 

 

 

3.3 Arterial Search Space Restriction 

 

Unlike the freeway case, the intersection traffic flow is interrupted by vehicle-actuated signal control, 

resulting in highly variable travel times.  A new search space reduction algorithm is developed for more 

general use of the proposed vehicle reidentification technique at signalized intersections utilizing midblock 

system detector and signal phase information.  Figure 3.3 presents a schematic of general loop detector 

configurations on signalized arterials including upstream detector, mid-block system detector, and actuated 

signal control detector.  This section presents search space reduction algorithm utilizing mid-block system 

detectors with signal phase information. Delay mechanism at signalized intersections including arterial 

travel time is the basis of developing the algorithm. 
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Figure 3.3.  Loop Detector Configurations on Signalized Arterials AA
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3.3.1 Background 

 

Unlike freeway case, estimating travel time on signalized arterials is a much more challenging problem due 

to the presence of signal control, resulting in highly fluctuated travel times.  Since the purpose of this study 

is to use loop detector data as inputs of travel time estimation algorithm, relevant literature were reviewed.  

Reviewed studies include British model (Gault and Taylor, 1977), Illinois model (Sisiopiku and Rouphail, 

1994), Iowa model (Zhang, 1998), and Singapore model (Xie et al., 2001).  The models are briefly 

introduced in the following. 

 

• The British model (1977) 
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T : Average link travel time 

o : Average detector occupancy 

L : Link length 

fv : Free flow speed 

q : Flow (obtained from detector) 
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C : Cycle length 

g : Green time 

dP : Downstream green time 

uP : Upstream green time 

βα , : Regression coefficient 

 

• The Illinois model (1994) 
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• The Singapore model (2001) 
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 : Maximum speed of the downstream and upstream detector stations detu

 φ : Downstream queue factor (more details of φ  can be found in the literature) 

 

It has been identified that proposed models in the literature are based on statistical modeling using 

regression analysis.  Travel time model for signalized arterials can be viewed as the combination of running 

time and signal delay.  The major factors affecting running time are free flow speed and link length defined 

by upstream and downstream detector stations.  On the other hand, signal delay is a function of signal 

control parameters such as cycle length and green time.  Of course, traffic volume provides a significant 

impact on both running time and signal delay.  This study develops an arterial travel time model that will 

be used for establishing time window based on these findings. 

 

Estimating travel time is a basis for establishing time window, which reduces upstream candidate vehicles.  

Travel time between detection stations for vehicle reidentification at signalized intersections consists of 

three components.  These components include stopped delay ( ), time spent from upstream detector 

location to the end of the queue ( ), and time spent from stopline to downstream detector location ( ) as 

shown in Figure 3.4.  Minimum and maximum travel times of vehicle k are derived from the delay process 

at signalized intersections, and further utilized for time window. 

Dt

2t 1t
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Figure 3.4  Delay process at signalized intersections 
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3.3.2 Spatial Search Space Restriction 

 

Once  is estimated as presented above, the upstream origin of a certain vehicle can be readily identified 

by checking signal phase information with t .  Figure 3.5 shows the proposed search space reduction 

procedure to perform vehicle reidentification at signalized intersections. 
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Figure 3.5  Procedure for Signalized Arterial Spatio-Temporal Search Space Reduction 

 

 

3.3.3 Temporal Search Space Restriction 

 

Temporal search space reduction is performed by establishing a time window, which is based on the delay 

mechanism at signalized intersections.  When a certain vehicle is observed at a downstream detector 

station, the time window of the vehicle is established by minimum and maximum travel times.  The time 

window of vehicle k can be described as  

 

maxmin
k

DN
kkk

DN
k TTimetTWTTimet −≤≤− . 
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Figure 3.6 – 3.8 illustrate the flow chart for distance calculation to determine the time window.  The 

algorithm embedded in simulation first checks if the vehicle is transferring the link as well as the detector 

configuration setup for proper distance calculation.  Each time segment, such as t1, t2, and tD in Figure 3.4, 

is derived according to the detector position, and signal phase information. 

 
Figure 3.6  Arterial Time Window Setting : Part A 
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Figure 3.7  Arterial Time Window Setting : Part B 

 

 
Figure 3.8  Arterial Time Window Setting : Part C 
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3.4 Multi – Section Reidentification 

 

Vehicle tracking along the multi section will be performed based on the combination and integration of 

single section tracking results.  Each vehicle keeps single section reidentified information that gives the 

starting/ending node of each link.  The path information, multi – section reidentification algorithm result, is 

then obtained by updating each link’s ending node as the starting node for the next adjacent link.  In this 

study, simple and straightforward updating procedure is applied.  Future research area should involve 

further investigation on single section result updating scheme.  Figure 3.9 describes the multi-section 

reidentification result derivation concept. 

 

 
Figure 3.9  Multi Section Concept 

 

 

3.5 Performance Measurements (PeMS) 

 

The performance measurements (PeMS) that have been developed in this study based on anonymous 

vehicle tracking provide a breakthrough in traffic performance measurement accuracy and versatility.  

Previous performance measure studies relied on point-based traffic information either from single or double 

loop data.  As these methodologies provide performance measures based on point data, they cannot provide 

an accurate reflection of entire sections.  In fact, these section-related performances are obtained from 
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extrapolations from a single point in the network.  Since traffic movement represents a dynamic 

compressible flow, it is not possible to assume uniform conditions across an entire section based on 

measurements from a single point.  While point measurements may be accurate at the immediate vicinity of 

the detector station, they would provide erroneous estimates for street or freeway sections, which typically 

span between one and three quarters of a mile. 

 

With the critical need for a comprehensive performance measurement system and the limitations of the 

present systems, it is imperative to develop new performance measures that are able to provide traffic 

information representative of piecewise continuous road sections.  Through the implementation of the 

anonymous vehicle tracking system, vehicles can be tracked across freeway sections, street sections and 

even street intersections.  Hence, accurate section travel times and speeds can be obtained without 

compromising the privacy of vehicle occupants.  Besides, this system can be readily expanded to track 

vehicles across multiple sections to obtain performance measures of not just individual road segments, but 

origin-destination paths in extensive road networks.  The following table summarizes the performance 

measurement details that can be obtained at information and network levels and data applications. 
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Table 3.1  Summary of PeMS 

 

 PeMS Information Source Application 
Station 
(Point) 

- Flow, volume, intersection 
turning volume 

- Occupancy 
- Speed 
- Vehicle class 

Basic Traffic Point Data - Performance 
evaluation based 
on point 
measurements 

- Vehicle 
Classification 

Link 
(Section) 

Algorithm Evaluation 
- Detection Rate (= B/A) 
- Correct Matching Rate (= C/A) 
- System Reliability Rate (= C/B) 
 
Link Travel Time 
- Accuracy 
- Variation 
- Delay 
 
OD Information 
- Lane based OD Matrix 
 

Single Section Vehicle Reidentification 
 
Total vehicle at downstream = A 
Algorithm declared matching vehicle = B 
Correctly matched vehicle from algorithm 
= C 
 
Origin : upstream lane 
Destination : downstream lane 

- Performance 
evaluation based 
on section 
measurements 

- Congestion 
monitoring 

- Travel time 
reliability 

- Real time traveler 
information 

- Driver’s behavior 
analysis 

- Safety 
- LOS Analysis 
 

Network 
(Path) 

Algorithm Evaluation 
- Detection Rate (= B/A) 
- Correct Matching Rate (= C/A) 
- Total System Reliability Rate  
       (= C/B) 
- Individual Vehicle System 

Reliability Rate  
       ( = (C/B)*(Lm/Lt)) 
 
OD Information 
- Volume accuracy 
- Travel time accuracy 
- Travel time variation 
- Travel time delay 
 

Multi-Section Vehicle Reidentification 
 
Total vehicle at destination Zd from origin 
Zo = A 
Algorithm declared at destination Zd  with 
origin Zo = B 
Correctly tracked vehicle from algorithm 
(correct Zo) = C 
Missing Link from algorithm in predefined 
path= Lm 
Total Link in predefined path= Lt 

 
 

- Time-varying OD 
matrix estimation 

- Dynamic traffic 
assignment 

- Route guidance 
- Coordinated traffic 

control 
- Real-time traveler 

information 
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CHAPTER 4   SIMULATION FRAMEWORK 

 

 

4.1 Introduction 

 

The proposed evaluation framework employs PARAMICS microscopic traffic simulator.  To date, various 

simulation models have been used for evaluating ATMIS strategies.  Traffic simulation models can be 

broadly classified into two groups: microscopic and macroscopic models.  As recently developed ATMIS 

strategies often require the observation of very detailed levels of traffic phenomenon such as individual 

vehicle movements, the microscopic simulation model is better suited for such needs, although model 

validation and calibration issues still need to be solved.  Many studies have used microscopic simulation 

models for evaluating dynamic traffic assignment, route guidance, signal control, incident detection, and 

ramp control strategies.  However, the traffic surveillance system, which is a core part of such strategies, 

has not been evaluated under the simulation environment.  One of the invaluable features of this study is to 

present a methodology on how to use microscopic simulation models for evaluating traffic surveillance 

system.  The proposed simulation framework could be of great value for testing and performance 

comparison of traffic surveillance algorithms.  The overall simulation flow chart is described in Figure 4.1 

and each module is mentioned in detail respectively in the following sections. 

 

 
Figure 4.1.  Overall Simulation Framework 
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4.2  PARAMICS 

 

PARAMICS (PARAllel MICroscopic Simulation) is a parallel, microscopic, scalable, user programmable 

and computationally efficient traffic simulation model (Duncan, 1995; Quadstone Ltd., 2003) that has been 

used for many applications in the ATMS Testbed. Individual vehicles are modeled in fine detail for the 

duration of their entire trip, providing comprehensive traffic characteristics and congestion information, as 

well as enabling the modeling of the interface between drivers and Intelligent Transportation Systems 

facilities and strategies.  

 

The Testbed network (for Orange County) coded into PARAMICS consists of 5,400 nodes, 12,160 links 

and 420 zones, and provides a highly detailed 3-dimensionally and geographically correct representation 

for traffic and ITS simulations.  This network is coded for over 200,000 vehicle trips across both freeways 

and major arterials in the 4-6pm afternoon peak period.  This network is also calibrated based on UCI 

Testbed archived real world dataset.  At ITS-Irvine, PARAMICS currently operates on an SGI Origin2000 

mutiprocessor workstation.  With this system, over 90,000 vehicles can be simulated in real-time (or fewer 

vehicles in faster than real-time) (Lee, 1998). 

 

A notable feature of PARAMICS is its scalability.  A large network, such as that for the California ATMS 

Testbed, can be decomposed into regions where each is simulated on a processor in a parallel machine.  

This scalability enables development to start off small and then grow, and provides the potential for 

achieving faster than real-time, multi-scenario simulations.  Another major feature of PARAMICS is its 

Application Programming Interface (API). The API allows the user to customize many features of the 

underlying simulation model, and to link PARAMICS to other applications developed by the user. 

Moreover the API allows additional functionality by adding more external modeling routines.  Additional 

PARAMICS key features include: 

 

• A fully integrated and interactive graphical network editor and manager 

• A highly detailed definitions of roadway network, travel demand, driver, vehicle, and traffic control 

devices 

• ITS-capability, featuring integrated simulation of ITS components, including a variety of traffic 

management, information and control strategies 

• Capability of modeling pre-timed and actuated signal control mechanisms 

• Capability of modeling vehicle emissions, incident, bus, and car parking 

• A fully integrated visualization tools to display simulation results 
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4.3   Network Setting and Tracking Module 

 

The initial step to build the simulation framework is discussed in this section.  Parameters setting, network 

scope decision and API module implementation for vehicle tracking are the major tasks.  The inter-relation 

among those factors is illustrated in Figure 4.2.   

 

A central control module in PARAMICS is connected with both arterial and freeway vehicle tracking API 

module.  Detector ID information will contribute to identify the network attribute to set the corresponding 

reidentification algorithm.  In PARAMICS, users are able to define not only vehicle types but also the 

proportions of such vehicle types in traffic streams.  In addition, the physical characteristics of each vehicle 

including length, height, width, maximum speed, acceleration and deceleration can also be specified.  

Based on the analysis of vehicle signatures discussed in the previous chapter, we pre-defined vehicle types 

and vehicle proportions in PARAMICS prior to running the simulation.  The calibrated parameters, such as 

reaction time and headway, were set according to the previous studies (Chu et al 2003, 2004). 

 

 
Figure 4.2  PARAMICS Modeller 

 

The network site for the proposed study covers the I-405 corridor and 36 arterial intersections in southern 

California.  The entire study site network is presented in Figure 4.3.  

 

In freeway setting, I-405 and SR-133 were the major freeway corridors with five consecutive interchanges.  

The interested five interchanges are:  

1. I-405 and Jeffrey  

2. I-405 and Sand Canyon 
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3. I-405 and SR-133 

4. I-405 and Irvine Center Dr. 

5. SR-133 and Barranca 

 

A total 115 detector stations were coded including on-ramp detectors, off- ramp detectors, and mainline 

detectors.  The freeway was configured with six lanes and a speed limit of 65 mph, while on-ramps had a 

speed limit of 40 mph.  A total of five zones were connected with the freeway traffic demand.   

 

 
Figure 4.3  Proposed Study Site 

 

In the arterial network, 36 intersections in city of Irvine were included.  They were coded with a three - 

lane configuration and a speed limit of 40 mph.  A total of 156 detection stations and 30 zones were 

implemented.  Table 4.1 lists the 36 intersections coded in the simulation network. 
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Table 4.1  Intersection List 

 

Intersection Number Road Name 

1 Barranca Parkway East Yale Loop 

2 Alton Parkway East Yale Loop 

3 Barranca Parkway Jeffery Road 

4 Alton Parkway Jeffery Road 

5 Jeffery Road Quailcreek Road 

6 Jeffery Road Northbound 405 

7 University Drive Southbound 405 

8 Alton Parkway Royal Oak Drive 

9 Barranca Parkway Valley Oak Drive 

10 Alton Parkway Valley Oak Drive 

11 Barranca Parkway Sand Canyon Avenue 

12 Sand Canyon Avenue Hospital 

13 Alton Parkway Sand Canyon Avenue 

14 Alton Parkway Hospital 

15 Barranca Parkway Laguna Canyon Road 

16 Alton Parkway Laguna Canyon Road 

17 Laguna Canyon Road Pasteur 

18 Barranca Parkway Telemetry 

19 Alton Parkway Jenner 

20 Barranca Parkway Herchel 

21 Alton Parkway Telemetry 

22 Barranca Parkway Banting 

23 Alton Parkway Banting 

24 Barranca Parkway Pacifica 

25 Pacifica Gateway 

26 Alton Parkway Pacifica 

27 Barranca Parkway Irvine Center Drive 

28 Irvine Center Drive Gateway Boulevard 

29 Alton Parkway Irvine Center Drive 

30 Irvine Center Drive Spectrum 

31 Irvine Center Drive Pacifica 

32 Irvine Center Drive Enterprise Drive 

33 Irvine Center Drive Southbound 405 

34 Alton Parkway Gateway Boulevard 

35 Gateway Boulevard Fortune Drive 

36 Enterprise Freeway 133 
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4.4   Error Generator Module (EG) 

 

In this module, the input data for reidentification algorithm will be generated based on vehicle statistics 

analysis performed in the previous chapter.  Vehicle types, their traffic pattern, and their proportion in 

traffic stream are predefined from the PARAMICS module.  Major API coding was also performed for the 

Error Generator module. 

 

 

Figure 4.4  Error Generator Module 

 

 

4.5   Reidentification Module (REID) 

 

In the Reidentification Module (REID), a lexicographic reidentification algorithm was implemented and 

examined by applying the input data from EG Module.  The path information was then derived through 

integration of single section reidentification results.  
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Figure 4.5 Reidentification Module 

 

 

4.6   PeMS Module 

 

As discussed in the earlier chapter, performance measurements are obtained by comparing the ground truth 

data with reidentification results.  The investigation on defining the optimal aggregation interval for 

accurate traffic parameters derivation is also a future study area. 

 

 

Figure 4.6.  PeMS Module 
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CHAPTER 5   PARAMICS EXPERIMENTAL DESIGN AND RESULT ANALYSIS 

 

 

5.1 Introduction 

 

Invaluable section-related traffic information can be obtained by tracking individual vehicles.  In this 

section, travel time is chosen as the main analysis component since it is one of the most important traffic 

measurement parameters for successful and efficient traffic operations and control.  The search for an 

optimal aggregation interval was conducted based on the assessment of travel time percentage error.  In this 

section, five different aggregation intervals were used.  Furthermore, three types of path, with different road 

geometry compositions, were also selected for expanded research scope.  The following subsections will 

explain each analysis step in detail.   

 

5.2  PARAMICS Setting 

 

Traffic demand was set to be moderate flow throughout the simulation running.  The simulation duration, 

which consisted of a total of 45-minute simulation running time, with 20-minute warmup time, was 

deployed due to limitations of computer processors.  The warmup time served to ascertain stable traffic 

flow conditions before executing the vehicle re-identification algorithm.  The vehicle-releasing pattern 

followed the normal distribution and a total of 30 simulation runs with different seed numbers were 

performed.  In average, there were 4470 vehicles that were released after the warm-up time period and 

therefore, were subject to the REID API running.  Among those 4470 vehicles, about 1500 vehicles were 

declared as reidentified by the implemented REID API.  Details on REID module results will be mentioned 

in the following section.   

 

In this study, three different paths that varied with road type were selected for further analysis.  Path 1 was 

mainly composed of I-405 freeway sections. Arterial links were the main components for path 2.  In path 3, 

freeway and arterial sections were mixed.  With this setup, the effect of vehicle re-identification results on 

estimated travel time accuracy at different locations and paths can also be examined.  Figure 5.1 explains 

the overall study site as well as three different paths.   
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Figure 5.1  Three Different Paths 

 

 

5.3  REID Module Analysis 

 

A total of 17 vehicle types were generated to ensure average correct matching rate of 70% for single 

section REID.  The mixture of vehicles types is set to represent or replicate closely the real world traffic 

composition.  Motorcycles and short vehicles that include passenger cars, SUVs, and vans were categorized 

as vehicle type from one to twelve.  Trucks and trailers were categorized as vehicle types from 13 to 17 

depending on vehicle feature vectors.  In this study, short vehicles refer to vehicle types from one to twelve 

and the rest as long vehicles.   

 

The average Correct Matching Rate (CMR), as defined in previous section, across all the single sections in 

the network were 70.12%.  Table 5.1 describes analysis of multi-section REID module results.  As 

illustrated in this table, CMR for long vehicles are higher compared to the CMR of short vehicles in all 

three different paths.  Outstanding signature feature vectors of long vehicles are contributing to the 

resulting high CMR.  Another element that affects multi s-section CMR is number of single sections in the 

corresponding path; in this case, path 1, 2, and 3.   
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Table 5.1  Multi-Section REID Module Results per Vehicle Type  

CMR (%) Vehicle Code Vehicle 

Description 

Composition 

% Path 1 (*14) Path 2 (*10) Path 3 (*15) 

1 - 12 Short Vehicles - 

Motorcycle, PC, 

SUV, Van, Small 

Pickup etc 

72.02 10.65 5.25 6.30 

13 - 17 Long Vehicles - 

Truck, Trailer etc 

27.98 11.61 5.28 6.43 

 

(*) Number of single section in corresponding path 

 

5.4 Travel Time Analysis 

 

5.4.1 Travel Time Validation, Hypothesis Test 

 

The investigation on validation of estimated travel time needs to be processed prior to the analysis of 

estimated travel time.  Hence, two hypothesis analysis techniques were applied for this purpose, depending 

on the sample numbers, which in turn are also highly related to the aggregation interval.   

 

KS Test 
The Kolmogorov-Smirnov test (K-S Test) is applied to examine the significance of the difference between 

travel time from reidentified travel time and ground truth travel time.  The K-S test is non-parametric and is 

based on the largest absolute difference between the observed and the expected (or theoretical) cumulative 

distributions.  An attractive feature of this test is that the distribution of the K-S test statistic itself does not 

depend on the underlying cumulative distribution function being tested.  In other words, the KS-test has the 

advantage of making no assumption about the distribution of the dataset of interest.  Another benefit of the 

K-S test is that it is an exact test, unlike the chi-square goodness-of-fit test, which depends on the 

availability of an adequate sample size for the approximations to be valid.  Due to the small sample number 

at the aggregation level of 30 seconds, the K-S test was deployed for the travel time hypothesis analysis.   

 

t-test 

t-test is used when comparing the differences between two sample means.  Depending on sample size and 

sample variance characteristics, there exist three types of t-test.  In this study, Type 2 t-test was applied 

since the sampling size was less than 30 at the aggregation interval of 60, 90, 120, and 150-second.  It 
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should be noted that the vehicle- releasing pattern follows the normal distribution and therefore samples 

satisfy one of the requirement of a Type 2 t-test.   

 

Table 5.2 shows the two hypotheses test procedure mentioned in this study. 

 

Results 

Both KS test and t-test results show that the estimated travel time does conform to the true travel time for 

all paths and at all aggregation intervals.  The results demonstrate that the re-identification system is 

capable of producing accurate estimates of travel time information  
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Table 5.2  Hypothesis Procedure 

Step I : Hypothesis Definition 

 

H0 : Reidentified travel time distribution conforms to the real travel time distribution 

H1 : Reidentified travel time distribution does not conform to the real travel time distribution 

Or : , :  0H 21
−−

= XX 1H 21
−−

≠ XX

Step II : Level of significance Definition 

α =0.05 

Step III : Statistics Calculation 

KS test 

 

KS 

= Max(difference value between theoretical 

cumulative curve and sample cumulative curve) 

t-test 

)/1()/1(
)(

21

21

nnS
XXT

p +
−

=

−−

 

1n  : Sample Size of Group 1 

2n  : Sample Size of Group 2 
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Step IV : Degree of Freedom Definition 

KS test 

1+−= ρν n  

n : sample number 

ρ : number of estimated parameter 

t-test 

221 −+= nnν   

Step V : Decision Making – Rejection Area 

 

KS test 

αKSKS >  

t-test 

2

2

α

α

tT

tT

>

−<
  Two-tailed test. 
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5.4.2 Estimated Travel Time Analysis 

 

The preceding analysis on travel time validation has shown that it was safe to conclude that the estimated 

travel time represents the true travel time at all five different aggregation levels.  Identifying the optimal 

travel time aggregation intervals for generating useful traffic information accounting for the real-time 

performance of transportation systems is an important issue in the field of traffic surveillance and 

information systems.  In this section, estimated travel time accuracy was assessed at five different 

aggregation intervals.   

 

Analysis Index 

Total travel time percentage error (TotTTPE) was applied as the index for accuracy analysis and the 

following formula shows the TotTTPE calculation procedure.  At each step, the travel time accuracy is 

evaluated based on the comparison between the system declared travel time and ground-truthed travel time.  

TotTTPE is the average of these step-by-step percentage errors.  Five different aggregation intervals are 

applied in this study.   
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intervalanalysistotalofnumber:

intervalaterrorpercentagetimeTravel:

errorpercentagetimetravelTotal:
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In addition to TotTTPE, the effect of aggregation interval on travel time accuracy was investigated by the 

percentage error changing rate (PE_CR) index shown as follows. 
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Travel Time Result Analysis 

Figure 5.2 describes average TotTTPE from 30 different simulation runs at five different aggregation 

intervals.  PE_CR is also presented in Table 5.3.  It is obvious that the aggregation interval size is an 

important issue for designing real-time traffic management and information strategies.  As described from 

the above results analysis, different aggregation intervals produce different levels of accuracies.  In 

addition, shorter aggregation intervals have bigger travel time variations than those of the longer intervals.   
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Figure 5.2  Average TotTTPE at Different Aggregation Intervals 

 

 

Table 5.3  PE_CR Analysis Results 

Analysis Intervals (second) Freeway Arterial Combined 

30-60 1.284 96.090 76.134 

60-90 37.663 18.312 15.840 

90-120 7.239 23.409 21.813 

120-150 1.288 2.244 2.179 

Average 11.869 35.014 28.991 

 

In path 1 (freeway only), the biggest TotTTPE change occurs between the aggregation intervals of 60 

seconds and 90 seconds, yielding highest PE_CR.  However, the TotTTPE values at all intervals were 

lower than two percent and therefore, the high PE_CR was not significant enough for further investigation.  

It is of interest to note that in path 2 (arterial only), aggregation levels above 60 seconds yield TotTTPE 

with less than five percentage error rate.  Considering the traffic signal cycle used in PARAMICS, 60-90 

seconds depending on the intersection size, these results suggest that aggregation interval close to the 

corresponding signal cycle timing is prone to generate lower travel time estimation error.  For path 3, all 

TotTTPE values were higher than the rest two paths at all aggregation intervals.  In the case of PE_CR, the 
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highest value was observed between aggregation intervals of 30 and 60 seconds.  Comparison between 

estimated and true travel times at the 60-second aggregation interval is depicted in Figure 5.3.   

 

For all paths, the PE_CR between aggregation interval of 120 seconds and 150 seconds was the smallest 

and lower than value of three.  The arterial-only path yields the highest average PE_CR compared to the 

other paths.  It is also a remarkable point that for all paths at above the aggregation interval of 90 seconds, 

the TotTTPE was less than 10 percent.  Based on the above analysis, once the traffic measurements’ 

acceptable error ranges are defined by TMC operators, the corresponding aggregation intervals can also be 

determined.  For instance, if the pre-defined travel time error range is less than seven percent, then for 

freeway-only case, the suggested five aggregation intervals are all suitable.  However, in the case of arterial 

all intervals are acceptable with exception of the 30-second aggregation interval.  Moreover, for combined 

path case, only 120-second and 150-second aggregation intervals satisfy pre-defined error rate.  This also 

suggests that optimal aggregation intervals differ for different path types. 
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(a).  Freeway Path 

 
(b).  Arterial Path 

 
(c).  Combined Path 

 
Figure 5.3  Travel Time Analysis 
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5.5 Findings and Discussions 

 

This section has demonstrated a framework for simulated network evaluation based on vehicle re-

identification results.  Unlike most other simulation models, where vehicle tracking or re-identification is 

based on individual vehicle unique ID, this study has shown an API module that enables the re-

identification of vehicles based on feature vectors.  This approach also facilitates the testing and evaluation 

of developed vehicle re-identification algorithms.  Travel time analyses from three different paths also 

suggest significant results with low estimation errors.  Furthermore, this study also aims to provide optimal 

aggregation interval selection depending on path characteristics and TMC’s operator viewpoint – such as 

acceptable error rate.   

 

This study needs to extend its scope by applying and implementing enhanced and more robust vehicle re-

identification algorithms for better traffic measurements estimation.  Comparison among different vehicle 

tracking algorithms is also an area of future study 
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CHAPTER 6   VEHICLE CLASSIFICATION 

 

 

6.1 Introduction 

 

Complete and accurate traffic information is becoming more and more available with the advance in 

transportation surveillance technology.  Especially, vehicle classification information can contribute to 

many transportation related fields such as road pavement management, estimation of polluted emission etc.  

In previous sections and chapters, it was shown that vehicle signature is function of vehicle type and traffic 

conditions.  By exploiting this concept, the algorithm development in vehicle classification is investigated 

and corresponding results are presented 

 

Vehicle classification is the process of vehicle type recognition based on given vehicle characteristics.  

Accurate vehicle classification has many important applications in transportation.  One example is road 

maintenance, which is highly related to the monitoring of heavy vehicle traffic.  Because trucks and 

oversized vehicles exhibit distinctly different performance characteristics from passenger cars, the 

continuous updating of those vehicles with respect to their share in daily traffic will help estimate the life of 

current road surface and assist in the scheduling of road maintenance.  Design of a toll system can also use 

the same information.  Moreover, by obtaining the heterogeneity of traffic flow, vehicle classification 

information can lead to more reliable modeling of vehicle flow.  Incorporating the information of vehicle 

classification in the analysis of environmental impact is also highly desirable since different vehicle types 

have different degree of airborne and noise emission.  The class of vehicle is one of most important 

parameters in the process of road traffic measurement.  Improvement of highway safety can also benefit 

from vehicle classification information, knowing that the severity of traffic accidents is highly correlated 

with vehicle types.  This will be discussed more in detail in the following section.  To summarize, an area-

wide assessment of the component of vehicle classes in traffic is essential for more reliable and accurate 

traffic analysis and modeling.   

 

 45



6.2  Background 

 

Since early 1970s, vehicle classification has been an interested study area by many agencies and 

researchers because of its importance as mentioned earlier.  Especially Federal Highway Administration 

(FHWA) focuses in differentiating trucks by axle counting for better road and pavement maintenance.  

Davies (1986) summarized a review on early vehicle detection technologies and vehicle classification 

systems.  Various traffic sensors including inductive loop detector, video detector, acoustic detector, range 

sensor, and infrared detector were applied in many vehicle classification studies.  Inductive loop data, most 

widely implemented detector system, was used by Wang et al (2001) to classify three vehicle types: heavy 

vehicles, small cars, and motorcycles.  Lu et al (1989) conducted k-nearest neighbor method for 

categorizing vehicles into four classes using infrared detector.  Video detector is also one of major detectors 

used by many researchers for vehicle classification (Yuan et al, 1994; Wei et al, 1996; Gupte et al, 2002; 

Avery et al, 2004).  However, setting an optimal camera angle and selecting appropriate camera calibration 

parameters remain issues when exploiting video data.  Nooralahiyan (1997) applied signature data from 

acoustic sensor and neural network method to derive four vehicle categories.  A laser sensor, that returns 

vehicle range and intensity information, was deployed and examined by Harlow et al (2001) for vehicle 

detection and classification.  However, most of the listed studies focus on detecting and distinguishing long 

vehicles such as trailer and trucks from passenger cars and little consideration was paid in short vehicle 

categories.  In an effort to broaden study prospect on non-truck vehicle categories, Pursula et al (1994) and 

Sun et al (2001, 2003) have applied loop signature data.   

 

The proposed study aims to develop an automated vehicle classification system that can not only detect 

trucks from non-truck vehicles but also can categorize small vehicles into more detailed classes.  

Considering the real-time algorithm implementation in the future, the study also suggested a simple but 

powerful and robust algorithm that is based on heuristic decision tree method.  Especially, the multi-level 

decision tree method expedites the classification system by applying selected most distinguishable vehicle 

feature vectors at each step.  Furthermore, a large dataset from I-405 freeway was applied to test developed 

algorithm transferability.  Another innovative part of this study lies in deriving vehicle classification results 

in conjunction with single loop speed estimation model mentioned in earlier section.  This approach will 

also help to enhance the use of single loop for vehicle classification.  Comparison between current FHWA 

vehicle classification methods is also one of the focal points of this study. 

 

6.3 Methodology 

 

As shown in Table 6.1, three different vehicle classification schemes are introduced.  Two categories are 

based on FHWA classification.  FHWA classification scheme is separated into categories depending on 

whether the vehicle carries passengers or commodities.  Non-passenger vehicles are further subdivided by 
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number of axles and number of units, including both power and trailer units.  The difference between 

FHWA I and FHWA II category is in class 2 and 3.  Because automatic vehicle classifiers have difficulty 

distinguishing class 3 from class 2, these two classes may be combined into class 2, which is FHWA II 

category.  The last category, UCI category, dedicates more to differentiate FHWA I class 3, two axle four-

tire vehicles that contains pickup truck, van and SUV.  However, the signature similarity among vehicle 

type in class 3 leads to classification error and therefore more sophisticated classification procedure is 

required at this stage.   

 

Heuristic decision tree method, comparable to sequential screening approach, is deployed for vehicle 

classification model development.  The advantage of suggested model is its simplicity, which is one of the 

most important elements for fast algorithm computation process.  This feature will also contribute on 

possible future real-time algorithm implementation.  This is very significant from both practice and 

research aspects.  Sequential splitting approach is based on threshold values selected from corresponding 

feature vector distribution of each vehicle class.  This sequential approach helps to reduce the dimension of 

possible vehicle classes and therefore minimize the misclassification rate.  At each step different vehicle 

features, which will most distinguish one vehicle class from others, were deployed.  It was shown that 

vehicle length is the most dominant factor in distinguishing vehicle classes.  Similar to vehicle grouping 

module in previous section, DOS and SP are then used for further classification among similar vehicle 

length groups.  Other variables such as maximum magnitude and entropies are all applied for detailed 

classifications.  Figure 6.1 depicts above mentioned classification process.   
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Table 6.1  Vehicle Class Category 

 

Vehicle Type UCI Category FHWA I FHWA II 

Motorcycle 1 1 1 

Passenger Car 2 2 

Pickup Truck 3 

Van 16 

Sport Utility Vehicle (SUV) 17 

3 

2 

Buses 4 4 4 

Two-Axle 6 Tire Single Unit Truck 5 5 5 

Three-Axle Single Unit Truck 6 6 6 

Four or More Axle Single Unit Truck 7 7 7 

Four or Less Axle Single Trailer 8 8 8 

Five Axle Single Trailer 9 9 9 

Six or More Axle Single Trailer 10 10 10 

Five or Less Axle Multi Trailer 11 11 11 

Six Axle Multi Trailer 12 12 12 

Seven or More Axle Multi Trailer 13 13 13 

Class2 + Trailer 

Class3 + Trailer 

Class5 + Trailer 

Class6 + Trailer 

14 - - 

Auto Carrier, Moving Trailer 15 13 13 
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Figure 6.1  Vehicle Classification Flow Chart 

 

 

6.4 Result Analysis 

 

6.4.1 Dataset Description 

 

In this study, two datasets, calibration and testing, were used and manually verified for vehicle 

classification.  The calibration dataset consists of vehicle signature data collected from 14:00 to 14:30 PM 

on I-405 at Sand Canyon and Laguna Canyon.  Data from Laguna canyon at morning peak period was 

applied for testing dataset.  This will satisfy for model transferability testing at different time of the day.  In 

addition, because double loop configuration was used, single loop speed estimation can also be verified.  

Datasets used in this study are illustrated in Table 6.2.  
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Table 6.2  Dataset Description 

 

 Dataset  

 Training Testing 

Location Sand Canyon,  

Laguna Canyon 

Laguna Canyon 

Lane 7 lanes 7 lanes 

Time Period July 23rd, 2002,  

14:00 – 14:30 PM 

July 23rd, 2002,  

8:05 – 9:15 AM 

Loop Configuration Square Double Loop Square Double Loop 

Sample Rate 1200 Hz 1200 Hz 

Dataset Traffic Count 3836 6001 

 

Both datasets were manually ground truthed using side-view video from UCI research team for vehicle 

classification purpose.  Because of installed video angle and vehicle occlusion problem, not all the vehicles 

were identified and therefore some vehicles were excluded from study datasets.  Morning peak hour data 

from Laguna Canyon shows that about 5.8% from total traffic volume fits into this category.  Moreover, 

due to the heavy traffic volume during the morning peak period, some signatures were not in the format 

that could be processed and consequently were not considered for further investigation.   

 

6.4.2 Model Result Analysis 

 

The algorithm is tested under two loop conditions: double loop and single loop.  In case of single loop 

configuration, vehicle length is attained using speeds from speed estimation model in previous section.  

Two datasets, calibration and test, are applied for model evaluation.   

 

Calibration Results 

Table 6.3 summarizes calibration dataset classification results under different classification categories 

using different loop configurations.  Double loop configuration classification yield better results compared 

to single loop configuration case.  The results are very promising in that proposed algorithm not only 

separates small vehicles from long vehicles such as truck or multi trailer but also generates comprehensive 

differentiation within small vehicles, such as SUV and passenger cars. 

 

Table 6.4, 6.5, and 6.6 present the algorithm results in-detail according to the three proposed classification 

schemes.  Table 6.4 shows UCI vehicle classification category.  It is obvious that the misclassification rate 

is high among passenger cars, SUVs, pickup trucks and vans.  For trucks and trailers, the misclassification 

occurs when the signatures are similar but only differs in axle number.  For instance, in case of category 8 
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and 9 the axle count differs by one but because of signature similarities, the misclassified category vehicle 

8 are all assigned as category 9.  Same pattern is observed for category 5 and 6.  Recently developed traffic 

detector, blade detector, can be used to overcome these limitations by addressing vehicle axle number 

counting.  However, these detectors were not available to be fully implemented at the time of this study and 

integration with these blade detectors for enhanced and robust vehicle classification system is an area of 

future study.  It is also remarking point that classification results based on single loop are also encouraging.  

Especially, in FHWA I and II categories classification outcomes are very encouraging with over 90% 

correct classification rate.  It should also be noted that for some vehicle classes, such as multi trailer, even 

under single loop configuration, classification results show almost perfect classification rate because of 

unique vehicle signatures.   

 

Table 6.3  Vehicle Classification Result Summary (Calibration Dataset) 

 

 Double Loop Single Loop 

UCI Code 3358 (87.54%) 3286 (85.66%) 

FHWA Code Version I 3555 (92.67%) 3438 (89.62%) 

FHWA Code Version II 3809 (99.30%) 3787 (98.72%) 
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Table 6.4  UCI Category Classification Result (Calibration Dataset) 

 

Loop Configuration Vehicle Category Vehicle Count 

Double Loop Single Loop 

1 1 1 (100%) 1 (100%) 

2 1933 1818 (94.05%) 1797 (92.96%) 

3 607 515 (84.84%) 511 (84.18%) 

16 217 152 (70.04%) 115 (52.30%) 

17 888 703 (79.16%) 716 (80.63%) 

4 6 6 (100%) 6 (100%) 

5 81 73 (90.12%) 50 (61.73%) 

6 10 8 (80%) 8 (80%) 

7 - - - 

8 12 6 (50%) 6 (50%) 

9 50 45 (90%) 45 (90%) 

10 1 1 (100%) 1 (100%) 

11 - - - 

12 - - - 

13 - - - 

14 24 24 (100%) 24 (100%) 

15 6 6 (100%) 6 (100%) 

Total 3836 3351 (87.36%) 3277 (85.43%) 
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Table 6.5  FHWA I Category Classification Result (Calibration Dataset) 

 

Loop Configuration Vehicle Category Vehicle Count 

Double Loop Single Loop 

1 1 1 (100%) 1 (100%) 

2 1933 1818 (94.05%) 1797 (92.96%) 

3 1712 1567 (91.53%) 1494 (87.27%) 

4 6 6 (100%) 6 (100%) 

5 81 73 (90.12%) 50 (61.73%) 

6 10 8 (80%) 8 (80%) 

7 - - - 

8 12 6 (50%) 6 (50%) 

9 50 45 (90%) 45 (90%) 

10 1 1 (100%) 1 (100%) 

11 - - - 

12 - - - 

13 - - - 

14 24 24 (100%) 24 (100%) 

15 6 6 (100%) 6 (100%) 

Total 3836 3555 (92.67%) 3438 (89.62%) 
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Table 6.6  FHWA II Category Classification Result (Calibration Dataset) 

 

Loop Configuration Vehicle Category Vehicle Count 

Double Loop Single Loop 

1 1 1 (100%) 1 (100%) 

2 3645 3639 (99.84%) 3640 (99.86%) 

4 6 6 (100%) 6 (100%) 

5 81 73 (90.12%) 50 (61.73%) 

6 10 8 (80%) 8 (80%) 

7 - - - 

8 12 6 (50%) 6 (50%) 

9 50 45 (90%) 45 (90%) 

10 1 1 (100%) 1 (100%) 

11 - - - 

12 - - - 

13 - - - 

14 24 24 (100%) 24 (100%) 

15 6 6 (100%) 6 (100%) 

Total 3836 3809 (99.30%) 3787 (98.72%) 

 

 

Model Transferability 

In order to perform model transferability assessment, dataset collected at different time period was applied.  

Classification results are illustrated from Table 6.7 to Table 6.10.  Because the test dataset vehicle 

categories were mainly passenger cars, consisting about 81.053% of total volume, and considering the 

relatively high correct classification rate in this particular vehicle category, the total correct classification 

results in double loop configuration were better compared to calibration dataset.  On the other hand, the 

single loop configuration case yields slightly lower correct classification rates in all vehicle categories.  

However, the results were still significant enough to conclude the reliable model transferability.  In case of 

each vehicle category, classification result trends were similar compared to calibration dataset.  In other 

words, misclassification pattern was observed among vehicle classes whose signatures are similar but differ 

only in vehicle axle count such as class 5 and class 6.   
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Table 6.7  Vehicle Classification Result Summary (Test Dataset) 

 

 Double Loop Single Loop 

UCI Code 5384 (89.72%) 4893 (81.53%) 

FHWA Code Version I 5543 (92.37%) 5051 (84.17%) 

FHWA Code Version II 5937 (98.94%) 5864 (97.72%) 
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Table 6.8  UCI Category Classification Result (Test Dataset) 

 

Loop Configuration Vehicle Category Vehicle Count 

Double Loop Single Loop 

1 0 - - 

2 4891 4707 (96.24%) 4351 (88.96%) 

3 133 82 (61.58%) 68 (50.94%) 

16 638 328 (51.34%) 283 (44.32%) 

17 42 20 (47.63%) 14 (32.89%) 

4 9 9 (100%) 9 (100%) 

5 112 87 (77.85%) 53 (46.88%) 

6 24 13 (55.25%) 13 (55.25%) 

7 4 2 (50%) 2 (50%) 

8 8 3 (42%) 2 (26%) 

9 100 95 (95.10%) 66 (65.78%) 

10 1 1 (100%) 1 (100%) 

11 9 8 (85%) 4 (42%) 

12 2 1 (50%) 0 (0%) 

13 0 - - 

14 20 20 (100%) 20 (100%) 

15 8 8 (100%) 8 (100%) 

Total 6001 5384 (89.72%) 4893 (81.53%) 
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Table 6.9  FHWA Category Classification Result (Test Dataset) 

 

Loop Configuration Vehicle Category Vehicle Count 

Double Loop Single Loop 

1 0 - - 

2 4891 4707 (96.24%) 4351 (88.96%) 

3 813 589 (72.39%) 522 (64.26%) 

4 9 9 (100%) 9 (100%) 

5 112 87 (77.85%) 53 (46.88%) 

6 24 13 (55.25%) 13 (55.25%) 

7 4 2 (50%) 2 (50%) 

8 8 3 (42%) 2 (26%) 

9 100 95 (95.10%) 66 (65.78%) 

10 1 1 (100%) 1 (100%) 

11 9 8 (85%) 4 (42%) 

12 2 1 (50%) 0 (0%) 

13 0 - - 

14 20 20 (100%) 20 (100%) 

15 8 8 (100%) 8 (100%) 

Total 6001 5543 (92.37%) 5051 (84.17%) 
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Table 6.10  FHWA II Category Classification Result (Test Dataset) 

 

Loop Configuration Vehicle Category Vehicle Count 

Double Loop Single Loop 

1 0 - - 

2 5704 5690 (99.75%) 5687 (99.7%) 

4 9 9 (100%) 9 (100%) 

5 112 87 (77.85%) 53 (46.88%) 

6 24 13 (55.25%) 13 (55.25%) 

7 4 2 (50%) 2 (50%) 

8 8 3 (42%) 2 (26%) 

9 100 95 (95.10%) 66 (65.78%) 

10 1 1 (100%) 1 (100%) 

11 9 8 (85%) 4 (42%) 

12 2 1 (50%) 0 (0%) 

13 0 - - 

14 20 20 (100%) 20 (100%) 

15 8 8 (100%) 8 (100%) 

Total 6001 5937 (98.94%) 5864 (97.72%) 

 

 

6.5 Findings and Discussions 

 

This section has shown the application of vehicle signatures in vehicle classification field.  Accurate 

vehicle classification not only contributes on efficient road maintenance but also on many transportation 

perspectives including accurate traffic modeling.  Future tasks include integration with new detector, blade 

detector, for robust classification system development.  Furthermore, an algorithm that enables to train real 

time data automatically and adaptively should be investigated for straightforward model transferability. 
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CHAPTER 7   CONCLUSION AND FUTURE RESEARCH 

 

 

7.1  Summary of Findings 

 

Although a variety of sensor technologies have been developed and tested for tracking individual vehicles 

on transportation networks, the proposed anonymous vehicle tracking system utilizing vehicle feature 

vectors provides significant advantages since it uses existing field equipment and is free from privacy 

concerns.  Moreover, the use of existing loop infrastructure harnesses the full potential of investments 

already made and facilitates the ability for immediate field implementation.  Field investigation of the 

vehicle reidentification systems for a single roadway intersection and a freeway section on I-405 detector 

Testbed in the City of Irvine, California, has shown the potential for extension to multiple section 

implementations.  

 

This study has presented a framework for studying the feasibility of an anonymous vehicle tracking system 

for real-time freeway and arterial traffic surveillance and performance measurement.  The potential 

feasibility of such an approach was demonstrated by simulation experiments for a freeway and signalized 

arterial operated by actuated traffic signal controls.  Synthetic vehicle signatures were generated to evaluate 

the proposed tracking algorithm under the simulation environment.  The PARAMICS microscopic 

simulation model was used to investigate the proposed vehicle tracking algorithm.  The findings of this 

study can serve as a logical and necessary precursor to possible field implementation of the proposed 

system in freeway and arterial network.  It is also believed that the proposed method for evaluating a traffic 

surveillance system using microscopic simulation in this study can offer a valuable tool to operating 

agencies interested in real-time congestion monitoring, traveler information, control, and system 

evaluation.  Furthermore, the automatic vehicle classification system developed in this study showed very 

encouraging results.   

 

7.2 Future Research  

 

To fully exploit the benefits of the new generation of Intelligent Transportation Systems now widely under 

development, including applications for performance measurement and homeland security, more accurate 

and appropriate real-time traffic data need to be collected from the urban highway transportation network 

and communicated to traffic management centers, traffic operations personnel, travelers, and other 

agencies.   Future research should now deploy and investigate at a corridor level the anonymous vehicle 

tracking techniques that have been pioneered by the authors in previous PATH research.  The objective of 

such deployment would be to investigate and demonstrate real-time freeway and arterial performance 

measurement in a major real-world setting.  This research under TO 4159 emphasized microscopic 
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simulation in conjunction with individual intersection and freeway segment field implementations to 

develop and assess methods for tracking vehicles across multiple detector stations in a traffic network, 

based on real-time acquisition of vehicle inductive signatures, in order to provide improved freeway and 

arterial (and transit) performance measures to the Caltrans PeMS.  Ultimately, however, the utility and 

effectiveness of such new network-based methods can only be judged through large-scale field 

implementation. 
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